Narrow-Line Region Outflows In QSO2s : Implications for quasar-mode feedback

Travis C. Fischer - NASA Postdoctoral Program Fellow NASA's Goddard Space Flight Center

AGN feedback believed to have role in M- σ relationship

Mrk 573 - Fischer et al. in prep.

Mrk 573 - Fischer et al. in prep.

Gemini K-band H₂ 2.12µm FOV ~3"x3"

Mrk 573 - Fischer et al. in prep.

[SIII] arcs are connected to nucleus by H₂ arcs

F

0

 $V_{max} =$

+/- 100 km/s

B

0

2

[SIII] .9533µm H₂ 2.1218µm

Knots of [SIII] and H₂ gas are interwoven near the edges of the NLR

> Inner surfaces of molecular gas arms are ionized when inside the NLR

High velocity ionized gas is localized, accelerated off molecular gas lanes

Spatially-resolved NLRs often intersections between AGN ionization cone and host disk

NLR outflows in nearby AGN likely not large enough for bulge evacuation

0

 \bigcirc

S

350 pc

0.7 Kp4

0.7 Kpc

Minimal projection effects max r_{true} ~ 1.08r_{proj}

Do NLR outflows scale with luminosity?

We looked at luminous QSO2s to determine the extent of their NLRs

NLR extent scales with luminosity

High velocity outflow kinematics in QSO2s still occur at radii < 1 kpc

Fischer et al. in prep.

High velocity outflow kinematics in QSO2s still occur at radii < 1 kpc

Fischer et al. in prep.

Take Home

- Gemini NIFS IFU observations: Mrk 573 shows intricate relationship between ionized [SIII] gas inside the NLR and molecular H₂ gas outside the NLR.
- Extended NLR morphology and kinematics due to ionization of host disk material by the central AGN
 - Largely rotation + in situ acceleration of gas off fueling flows
 - Radially outflowing gas located in the plane of the disk —> allows direct measurement of maximum outflow radius
- HST/STIS observations: Nearby (z < 0.12), Iuminous QSO2s show kinematics and morphologies are comparable to nearby Seyferts (Fischer et al. 2010,2013).
 - NLR radial extent scales with AGN luminosity, however, outflows still do not reach distances required in bulge evacuation/quenching scenarios.

Travis Fischer — travis.c.fischer@nasa.gov

"This is the end, my beautiful friend"

-The Doors

Fischer et al. in prep.

Different kinematic profiles exist as a function of radius

 $\begin{array}{ll} \mbox{ign} r < 500 \mbox{ pc}: evacuation \\ r < 1000 \mbox{ pc}: ablation \\ \mbox{0} r > 1000 \mbox{ pc}: illumination \end{array}$

CLOUDY photoionization models using parameters from Kraemer+ 2009

Different kinematic profiles exist as a function of radius

Mrk 573

 $\begin{array}{ll} \mbox{if} r < 500 \mbox{ pc}: evacuation \\ r < 1000 \mbox{ pc}: ablation \\ \mbox{0} r > 1000 \mbox{ pc}: illumination \end{array}$

AGN feedback may be more frequent than originally thought

Disk (Fischer) + Spherical outflow (Liu) = disk ablation?

