Using Photoionization to Understand Outflows in AGN and Quasars

Karen M. Leighly (OU)

Collaborators

- Donald Terndrup (Ohio State University)
- Sarah Gallagher (Western University)
- Gordon Richards (Drexel University)
- Adrian Lucy (Columbia University)
- Darrin Casebeer (Boeing)
- Erin Cooper (OU)

Funding: NSF, STScl, FUSE

Why Study Quasars?

Emission and Absorption Lines in AGN and Quasars

- My research uses rest-frame infrared UV emission and absorption lines to understand the physics of AGN.
- These lines are powered by photoionization by the continuum from the central engine.
- In this talk, I will describe how we can use photoionization to determine the physical conditions of line emitting / absorbing gas.

The Central Engine Optical & UV: hot accretion disk (somewhat like stars) Xray: corona (like the solar corona)

Typical SED

(spectral energy distribution)

- Photoionizing photons emerge from the central engine.
- They illuminate and photoionize gas throughout the environment of the central engine.
- The photoionized gas produces emission lines.

Continuum: emission from the accretion disk.

Emission lines are broad due to high, principally Keplerian velocities.

Consider a quasar illuminating some gas

Zooming in on a hydrogen atom

Photoionization \Rightarrow frees an electron

Followed by Recombination

Hydrogen and helium emission lines are produced by recombination.

Photoionization Equibrium

- But there is a lot more to photoionization than simple photoionization / recombination.
- Solve:
 - ★ Photonization equilbrium equations★ Thermal equilibrium equations (
- And:
 - ★ Do it for all elements/ions
 - ★ Transfer the radiation

Collisional Excitation

Free electron collides with an ion ⇒ "Collisional Excitation"

Then....

Practically every other common line (CIV, SilV, OVI) is produced by collisional excitation.

Other Processes

- Photoexcitation
- Charge exchange
- Collisional deexcitation
- Photoionization / collisional excitation from excited states
- Effects of turbulence on line transfer

Cloudy

- Fortunately there is a freely-available code that can do this for us.
- Cloudy developed by Gary Ferland and collaborators over the period of last 38 years (!).

The Spectral Energy Distribution

- The spectral energy distribution varies from one quasar to the next.
- This may be a consequence of varying accretion rates / black hole masses.

Creating lons

- C⁺: E_{thresh}=11.3 eV
- C⁺²: E_{thresh}=24.4 eV
- C⁺³: E_{thresh}=47.9 eV

Higher energy photons are required to create highly ionized ions because remaining electrons are held more tightly.

RE 1034+39

- RE 1034+39 has a very hard (X-ray bright) spectral energy distribution.
- We expected it to have very strong highionization lines.
- E.g., OVI has an ionization potential of 113 eV.

(Spectroscopic notation: OVI is the photon emitted by O⁺⁵.)

Check with Simulations

- We developed semi-empirical spectral energy distributions to systematically test SED dependence.
- Parameterized by the energy of the exponential rolloff.

Strong OVI Confirmed

RE 1034+39 was a faint object for *FUSE*, but we were able to successfully observe the strong OVI line.

The OVI line is comparable with other quasars that have similar values of alpha_{ox}, the point-to-point slope between 2500 A (UV) and 2 keV (X-ray).

PHL 1811 – X-ray Weak SED

High-ionization Lines are Weak

 Typical highionization
 lines such as
 CIV are weak.

Semiforbidden Lines are also weak

Collisional Deexcitation

- If the excited-state lifetime is long compared with the time scale for collisions → no photon is produced.
- *Critical density*: collisional deexcitation rate equal to spontaneous emission rate.
- Semiforbidden lines (e.g., CIII], SiIII]) have somewhat low critical densities.

$n_{crit}(CIII]) = 3.4 \times 10^9 \text{ cm}^{-3}$ $n_{crit}(SiIII]) = 1.04 \times 10^{11} \text{ cm}^{-3}$

- Generally, the fraction of ionized hydrogen beyond the hydrogen ionization front is anticorrelated with α_{ox} , since X-rays can photoionize in that region.
- We see that the trend is *reversed* for the X-ray weakest objects

WTF?

Cold Gas

The key is the ultralow temperature of the ionized gas in PHL 1811.

Why so cold?

- Temperature of the gas is related to the energy of the photolelectrons.
- X-ray weak SED → most photoionizing photons have low energy → leaving photoelectrons have low energy → low temperature.

"Cooling Challenged" BLR

- → The gas is *too cool* for effective collisional excitation.
- Yet the flux from the central engine is intense.
- The photoionization energy goes to excited states of hydrogen and continuum emission.
- The result is *overall* weak line emission, not just the high-ionization lines.

Column Density How thick the gas is.

Ionized Slab

- The photoionizing spectrum is a steep function of energy.
- The photoionizing continuum is depleted of photons that can ionize particular ions as it traverses the slab.
- The ions present depend on where we truncate the slab.

Broad Absorption Line Quasars (BALQSOs)

Winds in Quasars

Gallagher & Everett 2007

We see the central engine continuum transmitted through the outflowing ionized gas.

FBQS J1151+3822

- FBQS J1151+3822
 is a low redshift
 (z=0.3344) quasar.
- Observed at Kitt Peak National Observatory 4m telescope

Lucy et al. 2014

FBQS J1151+3822

Standard Analysis

1. Measure all the lines.

2. Use the line depths / opacity to estimate the amount of each ion.

3. Use *Cloudy* to determine the location in parameter space that is closest to matching the measurements.

Best Fit is Not Good

Identifying Unsaturated Lines

- Look for lines that a
- Adrian was able to f
 2950 A that were n
 - MnII Mn is tw abundance thar.

- saturated.
 - ell, Mnll lines near

- agnitude lower
- Fell these lines were in an excited states (E> 1eV).

Spectrum/Continuum

A Better Fit

Unsaturated lines from MnII, CrII, very high excitation FeII

Density Sensitivity

• The FBQS J1151+3822 analysis also revealed density sensitivity.

 Lines near 2950A arise from higher levels than lines near 2600 or 2400A.

Collisional Excitation

- The difference between photoionized gas and thermally-excited (hot) gas is that the energy source for ionization is *external*.
- So, the excitation of the gas is high compared with its electron temperature.
- What this means is that most atoms are in the ground state most of the time.
- The exception are a few ions with low-lying levels that can be populated *if the density is high enough*.

Low Densities

Few collisions between gas particles

High Densities

Many collisions between gas particles, maintaining excited state populations

Density Sensitivity

• Collisional excitation is a function of density.

Density Sensitivity

The presence of the lines near 2950 indicate higher densities.

- We compared FBQS 1151 with other Fell BALQSOs
- We found that some included absorption near 2750 A, and some did not.
- Indicator of gas density.

Absorber Distance

- We can infer the absorber distance, because the recombination rate is a function of density.
 - ★ The lines / ions observed determine the ionization rate vs recombination rate equilibrium point.
 - ★ The recombination rate is known (from the density)
 - ★ Then the photoionization flux can be estimated.
 - ★ And therefore the distance from the central engine.

These two outflows lie far from the central engine.

These three outflows lie close to the central engine.

Mrk 231

- A famous, nearby (z=0.0421) ultraluminous infrared galaxy
- Nuclear starburst
- Galactic outflow
- Seyfert 1 spectrum
- NaID broad absorption line

Absorption Lines

- Absorption Lines have similar
 profiles same absorbing gas
- But high-ionization lines (Hel*) have higher velocity

than low-ionization lines (Call and NaID)

Hel*

NalD

- Neutral Helium in the 2s state, created by recombination onto He+.
- Found in the HII zone, along with, e.g., CIV.
- Requires relatively high ionization

- Neutral Sodium, destroyed by photons with E> 5.14 eV.
- Found deep in the partially ionized zone.
- Requires relatively low ionization.

Our Solution

 Hel* absorbing BAL wind impacts upon and accelerates dusty ambient gas.

Cloudy Models

- + mark locations where predicted column densities are consistent with measurements and limits.
- ~100 parsecs from central engine nuclear starburst

Source of Ambient Gas?

Mrk 231 has a well-known nuclear starburst
 ~150-200pc and 10-100 Myr (Davies et al. 2004)

Feedback in Action?

- The interaction of the BAL wind with the stellar effluvia in Mrk 231 may be an example of feedback in action.
- The problem is that at the densities inferred, assuming an Ω=0.2 global covering fraction, an enormous [OIII] emission line is predicted.
- Such an emission line is not seen.
- This is a generic problem for outflows with low densities (~10⁴ cm⁻³).

WPVS 007

 The FUSE spectrum of WPVS 007 includes SIV 1063 and SIV*1073.

 We use the ratio to estimate the density and the distance to the central engine.

Leighly et al. 2009

Occultation

- We have been monitoring WPVS 007 for > 10 years using Swift.
- In late 2014 / early 2015, we observed an occultation.
- Assuming Keplerian velocity, we obtained the distance of the occultor.

We found that the broad absorption line gas, and the occultor were located the same distance.

We find that both are consistent with the torus.

Velocity Variability

The *highest* velocity is observed when the object is the *least* reddened.

Clumpy Torus Model

Summary

Understanding AGN emission and absorption lines using photoionization diagnostics.

- ★ Spectral Energy Distribution
- ★ Column Density
- ★ Density